Highly efficient photocatalytic hydrogen evolution of graphene/YInO3 nanocomposites under visible light irradiation.

نویسندگان

  • Jianjun Ding
  • Wenhao Yan
  • Wei Xie
  • Song Sun
  • Jun Bao
  • Chen Gao
چکیده

Visible-light-driven hydrogen evolution with high efficiency is important in the current photocatalysis research. Here we report for the first time the design and synthesis of a new graphene-semiconductor nanocomposite consisting of YInO3 nanoparticles and two-dimensional graphene sheets as efficient photocatalysts for hydrogen evolution under visible light irradiation. The graphene/YInO3 nanocomposites were synthesized using a facile solvothermal method in which the formation of graphene and the deposition of YInO3 nanoparticles on the graphene sheets can be achieved simultaneously. The addition of graphene as a cocatalyst can narrow the band gap of YInO3 to visible photon energy and prolong the separation and lifetime of electron-hole pairs by the chemical bonding between YInO3 and graphene. The photocatalytic reaction with this nanocomposite reaches a high H2 evolution rate of 400.4 μmol h(-1) g(-1) when the content of graphene is 0.5 wt%, over 127 and 3.7 times higher than that of pure YInO3 and Pt/YInO3, respectively. This work can provide an effective approach to the fabrication of graphene-based photocatalysts with high performance in the field of energy conversion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel amorphous CoSnxOy decorated graphene nanohybrid photocatalyst for highly efficient photocatalytic hydrogen evolution.

A novel amorphous cobalt tin composite oxide decorated with graphene nanohybrid (CoSnxOy/G) sensitized by Eosin Y (EY) exhibited excellent photocatalytic hydrogen evolution activity (974.6 μmol for 3 h) under visible light irradiation. The highest AQE of EY-CoSnxOy/G of 20.1% was achieved at 430 nm.

متن کامل

Synthesis and investigation of structural, optical, and photocatalytic properties of BiFeO3/reduced graphene oxide nanocomposites

This study have been developed BiFeO3/reduced graphene oxide (BFO/RGO) nanocomposites by introduction of RGO in the structure of BFO nanoparticles in a short term ultrasonic treatment. The X-ray diffraction pattern and Fourier-transform infrared spectroscopy analysis reveal that the BFO/RGO composites were successfully synthesized. UV-visible absorption show that the introduction of RGO can eff...

متن کامل

Preparation of NiS/ZnIn2S4 as a superior photocatalyst for hydrogen evolution under visible light irradiation

In this study, NiS/ZnIn2S4 nanocomposites were successfully prepared via a facile two-step hydrothermal process. The as-prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). Their photocatalytic performance for hydrogen evolution under visible li...

متن کامل

Sol-Gel-Assisted Microwave-Derived Synthesis of Anatase Ag/TiO2/GO Nanohybrids toward Efficient Visible Light Phenol Degradation

A simple microwave-assisted (MWI) wet chemical route to synthesize pure anatase phase titanium dioxide (TiO2) nanoparticles (NPs) is reported here using titanium tetrachloride (TiCl4) as starting material. The as-prepared TiO2 NPs were characterized by electron microscopy, X-ray diffraction, UV/visible absorption spectroscopy, and infrared and Raman spectroscopic techniques. Further modificatio...

متن کامل

Immobilizing CdS quantum dots and dendritic Pt nanocrystals on thiolated graphene nanosheets toward highly efficient photocatalytic H2 evolution.

We report the development of a highly efficient photocatalytic system by immobilizing high-quality CdS quantum dots and dendritic Pt nanocrystals on thiol-functionalized graphene substrates. We have demonstrated that the use of QDs with compact sizes leads to a dramatically enhanced performance in comparison with their bulk counterparts. Our design allows for systematic examination of the impac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 6 4  شماره 

صفحات  -

تاریخ انتشار 2014